Professor

Zhou,Liujiang


Professor

Email: ljzhou86(at)hotmail.com

Office phone:

Education

2009.09-2014.07  University of Chinese Academy of Sciences       Ph.D

2004.09-2008.06  Hainan University                                                 B.S


Work Experience

2019.05-Present   University of Electronic Science and Technology of China, Professor

2017.01-2019.05  Los Alamos National Laboratory, Post-doctoral Fellow

2014.10-2016.12  Los Alamos National Laboratory, Post-doctor


Research Interests

Dr. Liujiang Zhou received his Ph.D. in 2014 from University of Chinese Academy of Sciences and performed postdoctoral researches at University of Bremen, Germany (2014.10-2016.12) and at Los Alamos National Laboratory, USA (2017.1-2019.5). He started his own independent academic career as a full professor at University of Electronic Science and Technology of China. His research efforts are focused on information functional materials, optoelectronic devices and computational materials, etc. He utilizes methods of first principle calculations (such as DFT, TD-DFT, GW), semi-empirical (phase-field, etc.) and molecular dynamics, etc., to conduct the computational designs on novel optoelectronic, energy, topological materials, etc., and to carry out static and dynamic simulations on electronic, magnetic, phonon, optical and intersecting properties.


Selected Publications

  1.  Zhou, L.*; Katan, C.; Nie, W.; Tsai, H.; Pedesseau, L.; Crochet, J.; Even, J.; Mohite, A.; Tretiak, S. Neukirch, A.* Cation Alloying Delocalizes Polarons in Lead-halide Perovskites. J. Phys. Chem. Lett. 2019, in press.

  2. Sun, Y.; Huang, Z.; Zhou, Z.; Wu, J.; Zhou, L.; Cheng, Y.; Liu, J.; Zhu, C.; Yu, M.; Yu, P.; et al. Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. Adv. Mater. 2019, 1806562

  3.  Zhou, L.*; Zhang, Y.; Zhuo, Z.; Neukirch, A. J.; Tretiak, S.* Interlayer-Decoupled Sc-Based Mxene with High Carrier Mobility and Strong Light-Harvesting Ability. J. Phys. Chem. Lett. 2018, 9, 6915–6920.

  4.  Li, W.; Zhou, L.; Prezhdo, O. V.; Akimov, A. V. Spin–Orbit Interactions Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. ACS Energy Lett. 2018, 3, 2159–2166.

  5.  Zhou, L.*; Neukirch, A.; Vogel, D.; Kilin, D.; Pedesseau, L.; Carignano, M.; Mohite, A.; Even, J.; Katan, C.; Tretiak, S.* Density of States Broadening in CH3NH3PbI3 Hybrid Perovskites Understood from ab initio Molecular Dynamics Simulations. ACS Energy Lett., 2018, 3, 787–793.

  6.  Zhang, J.; Zhang, J.; Zhou, L.; Cheng, C.; Lian, C.; Liu, J.; Tretiak, S.; Lischner, J.; Giustino, F.; Meng, S. Universal Scaling of Intrinsic Resistivity in Two-Dimensional Metallic Borophene. Angew. Chem. Int. Ed. 2018, 57, 4585–4589.

  7. Liu, P.-F.; Zhou, L.*; Tretiak, S.; Wu, L.-M.* Two-Dimensional Hexagonal M3C2 (M = Zn, Cd and Hg) Monolayers: Novel Quantum Spin Hall Insulators and Dirac Cone Materials. J. Mater. Chem. C. 2017, 5, 9181-9187.

  8.  Zhou, L.*; Zhuo, Z.; Kou, L.; Du, A.; Tretiak, S.* Computational Dissection of Two-Dimensional Rectangular Titanium Mononitride TiN: Auxetics and Promises for Photocatalysis. Nano Lett. 2017, 17, 4466–4472.

  9.  Liu, P.-F.; Zhou, L.*; Frauenheim, T.; Wu, L.-M.* Two-dimensional hydrogenated molybdenum and tungsten dinitrides MN2H2 (M= Mo, W) as novel quantum spin hall insulators with high stability. Nanoscale. 2017, 9, 1007-1013.

  10. Liu, P.-F.; Zhou, L.*; Frauenheim, T.; Wu, L.-M.* Graphene-like Mg3N2 Monolayer: High Stability, Desirable Direct Band Gap and Promising Carrier Mobility. Phys. Chem. Chem. Phys. 2016,18, 30379-30384.

  11. Zhou, L.*; Shao, B.; Shi, W.; Sun, Y.; Felser, C.; Yan, B.; Frauenheim, Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M=Ti, Zr, Hf). 2D Mater. 2016, 3, 35022.

  12. Zhou, L.*; Shi, W.; Sun, Y.; Shao, B.; Felser, C.; Yan, B.; Frauenheim, T. Rectangular Tantalum Carbide Halides TaCX (X = Cl, Br, I) monolayer: Novel Large-Gap Quantum Spin Hall Insulator. 2D Mater. 2016, 3, 35018.

  13. Zhou, L.*; Hou, Z.F.; gao, B.; Frauenheim, F. Doped Graphene as Anodes with Large Capacity for Lithium-Ion Batteries. J. Mater. Chem. A. 2016, 4, 13407–13413.

  14. Zhou, L.*; Zhang, J.; Zhuo, Z.; Kou, L.; Ma, W.; Shao, B.; Du, A.; Meng, S.; Frauenheim, F. Novel Excitonic Solar Cells in Phosphorene-TiO2 Heterostructures with Extraordinary Charge Separation Efficiency. J. Phys. Chem. Lett. 2016, 7, 1880–1887.

  15. Dong, H.; Zhou, L.*; Frauenheim, T.; Hou, T.; Lee, S.T.; Li, Y.* SiC7 Siligraphene: Novel Donor Material with Extraordinary Sunlight Absorption. Nanoscale, 2016, 8, 6994-6999.

  16. Liu, P.-F.; Zhou, L.*; Frauenheim, T.; Wu, L.-M.* New Quantum Spin Hall Insulator in Two-Dimensional MoS2 with Periodically Distributed Pores. Nanoscale, 2016, 8, 4915–4921.

  17.  Zhou, L.*; Kou, L.; Sun, Y.; Felser, C.; Hu, F.; Shan, G.; Smith, S. C.; Yan, B.; Frauenheim, T. New Family of Quantum Spin Hall Insulators in Two-Dimensional Transition-Metal Halide with Large Nontrivial Band Gaps. Nano Lett., 2015, 15, 7867–7872.

  18.  Zhou, L. J.; Hou, Z. F.; Wu, L. M.; Zhang Y.F. (2014): First-Principles Studies of Lithium Adsorption and Diffusion on Graphene with Grain Boundaries. J. Phys. Chem. C, 2014, 118, 28055–28062.

  19. Yu, P.; Wu, L. M.; Zhou, L. J.; Chen, L. Deep-Ultraviolet Nonlinear Optical Crystals: Ba3P3O10X (X = Cl, Br). J. Am. Chem. Soc. 2014, 136, 480–487.

  20. Zhou, L. J.*; Zhang, Y. F.; Wu, L. M. SiC2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell. Nano Lett., 2013, 13, 5431–5436.

  21. Lin, H.; Chen, L.; Zhou, L.-J.; Wu, L.-M. Functionalization Based on the Substitutional Flexibility: Strong Middle IR Nonlinear Optical Selenides AXII4XIII5Se12. J. Am. Chem. Soc., 2013, 135, 12914–12921.

  22. Yu, P.; Zhou, L. J.; Chen, L. Noncentrosymmetric Inorganic Open-Framework Chalcohalides with Strong Middle IR SHG and Red Emission: Ba3AGa5Se10Cl2 (A = Cs, Rb, K). J. Am. Chem. Soc., 2012, 134, 2227–2235.

  23.   Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects. J. Phys. Chem. C, 2012, 116, 21780-21787.







0.0649s